Accurate detection of complex structural variations using single-molecule sequencing (2024)

  • Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J. O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).

    Article PubMed CAS Google Scholar

  • Lupski, J. R. Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ. Mol. Mutagen. 56, 419–436 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Macintyre, G., Ylstra, B. & Brenton, J. D. Sequencing structural variants in cancer for precision therapeutics. Trends Genet. 32, 530–542 (2016).

    Article PubMed CAS Google Scholar

  • Hedges, D. J. et al. Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci. Mol. Autism 3, 2 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Rovelet-Lecrux, A. et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 38, 24–26 (2006).

    Article PubMed CAS Google Scholar

  • Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  • Dennenmoser, S. et al. Copy number increases of transposable elements and protein-coding genes in an invasive fish of hybrid origin. Mol. Ecol. 26, 4712–4724 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Zichner, T. et al. Impact of genomic structural variation in Drosophila melanogaster based on population-scale sequencing. Genome Res. 23, 568–579 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Imprialou, M. et al. Genomic rearrangements in Arabidopsis considered as quantitative traits. Genetics 205, 1425–1441 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article PubMed CAS Google Scholar

  • Kadalayil, L. et al. Exome sequence read depth methods for identifying copy number changes. Brief. Bioinform. 16, 380–392 (2015).

    Article PubMed CAS Google Scholar

  • Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).

    Article PubMed PubMed Central Google Scholar

  • Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    Article PubMed CAS Google Scholar

  • Huddleston, J. et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 27, 677–685 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • English, A. C., Salerno, W. J. & Reid, J. G. PBHoney: identifying genomic variants via long-read discordance and interrupted mapping. BMC Bioinformatics 15, 180 (2014).

    Article PubMed PubMed Central CAS Google Scholar

  • Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Tattini, L., D’Aurizio, R. & Magi, A. Detection of genomic structural variants from next-generation sequencing data. Front. Bioeng. Biotechnol 3, 92 (2015).

    Article PubMed PubMed Central Google Scholar

  • Teo, S. M., Pawitan, Y., Ku, C. S., Chia, K. S. & Salim, A. Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics 28, 2711–2718 (2012).

    Article PubMed CAS Google Scholar

  • Lucas Lledó, J. I. & Cáceres, M. On the power and the systematic biases of the detection of chromosomal inversions by paired-end genome sequencing. PLoS One 8, e61292 (2013).

    Article PubMed PubMed Central CAS Google Scholar

  • Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Article PubMed CAS Google Scholar

  • Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012).

    Article PubMed PubMed Central CAS Google Scholar

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXivPreprint at https://arxiv.org/abs/1303.3997(2013).

  • Sović, I. et al. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat. Commun. 7, 11307 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Xiao, C. L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).

    Article PubMed CAS Google Scholar

  • Li, H. Minimap2: fast pairwise alignment for long nucleotide sequences. arXivPreprint at https://arxiv.org/abs/1708.01492 (2017).

  • Chaisson, M. J. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    Article PubMed CAS Google Scholar

  • Sedlazeck, F. J., Rescheneder, P. & von Haeseler, A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 2790–2791 (2013).

    Article PubMed CAS Google Scholar

  • Carvalho, C. M. et al. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat. Genet. 43, 1074–1081 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Shimojima, K. et al. Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region. Eur. J. Med. Genet. 55, 400–403 (2012).

    Article PubMed Google Scholar

  • Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224–238 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Mühle, C., Zenker, M., Chuzhanova, N. & Schneider, H. Recurrent inversion with concomitant deletion and insertion events in the coagulation factor VIII gene suggests a new mechanism for X-chromosomal rearrangements causing hemophilia A. Hum. Mutat. 28, 1045 (2007).

    Article PubMed Google Scholar

  • Gusfield, D. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology (Cambridge Univ. Press, Cambridge, UK, 1997).

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article PubMed PubMed Central CAS Google Scholar

  • Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Zook, J. M. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci. Data 3, 160025 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  • Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338–345 (2018).

  • Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251 (2014).

    Article PubMed CAS Google Scholar

  • Eberle, M. A. et al. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree. Genome Res. 27, 157–164 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Zimin, A. V., Smith, D. R., Sutton, G. & Yorke, J. A. Assembly reconciliation. Bioinformatics 24, 42–45 (2008).

    Article PubMed CAS Google Scholar

  • Beri, S., Bonaglia, M. C. & Giorda, R. Low-copy repeats at the human VIPR2 gene predispose to recurrent and nonrecurrent rearrangements. Eur. J. Hum. Genet. 21, 757–761 (2013).

    Article PubMed CAS Google Scholar

  • Nattestad, M. et al. Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line. bioRxiv Preprint athttps://www.biorxiv.org/content/early/2017/08/10/174938(2017).

  • Merker, J. D. et al. Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet. Med. 20, 159–163 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article PubMed PubMed Central CAS Google Scholar

  • Jeffares, D. C. et al. Transient structural variations alter gene expression and quantitative traits in Schizosaccharomyces pombe. Nat. Commun. 8, 14061 (2017).

  • Accurate detection of complex structural variations using single-molecule sequencing (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Patricia Veum II

    Last Updated:

    Views: 6218

    Rating: 4.3 / 5 (64 voted)

    Reviews: 87% of readers found this page helpful

    Author information

    Name: Patricia Veum II

    Birthday: 1994-12-16

    Address: 2064 Little Summit, Goldieton, MS 97651-0862

    Phone: +6873952696715

    Job: Principal Officer

    Hobby: Rafting, Cabaret, Candle making, Jigsaw puzzles, Inline skating, Magic, Graffiti

    Introduction: My name is Patricia Veum II, I am a vast, combative, smiling, famous, inexpensive, zealous, sparkling person who loves writing and wants to share my knowledge and understanding with you.